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Information-Theoretic Stochastic Resonance in Noise-Floor Limited Systems:
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We show that in systems whose output must compete with a noise source, stochastic resonance (maxi-
mization of output signal-noise separation as a nonmonotonic function of input noise strength) exists even
when measured in terms of fundamental statistical measures and optimal detector performance. This is
in contrast to the commonly considered scenario where, without the competing noise, the system (e.g.,
a driven, overdamped particle moving in a double well potential) is essentially invertible and optimal
detector performance monotonically deteriorates with increasing input noise strength.

PACS numbers: 05.45.—a, 02.50.Ey, 05.40.Ca

Many archetypal stochastic nonlinear dynamical sys-
tems exhibit stochastic resonance (SR), whereby output
signal power and certain output signal-noise separation in-
dices, such as the signal-to-noise ratio, show a nonmono-
tonic behavior involving a local or global maximum as a
function of input noise strength [1]. It has been speculated
that the SR effect could be used to enhance information
transfer in such systems.

The prototype SR system is an overdamped Brownian
particle in a sinusoidally modulated bistable potential, a
good first approximation to a number of noisy nonlinear
dynamical systems. With deterministic and stochastic forc-
ing, the response is invertible in the sense that the input,
i.e., the total driving force, can be reconstructed from the
output, i.e., the response. It follows immediately that op-
timal signal detection performance at the output of the
system equals that at the input, because an optimal de-
tector on the output could simply invert the system and
apply optimal detection to the reconstructed input. Since
adding Gaussian noise to the signal can only reduce the op-
timal detection performance at the input— and hence at the
output—we would appear to have lost the SR effect by
replacing the suboptimal detectors typically considered in
SR studies (e.g., power at the signal frequency) with opti-
mal detectors. In this Letter we show that the SR effect is
present even within an optimal detection framework when
one additional important physical consideration is retained
in the model, viz., an additional noise source competing
with the system’s output.

Consider two signal processing blocks in series. The
first block (the nonlinear “system”) takes a noisy input x(z),
in which a target signal (e.g., a sinusoid) may be embed-
ded, and outputs its response y(¢). The second block (the
“detector”) attempts to determine whether the target signal
was present at the nonlinear system’s input. A compet-

0031-9007/00/85(16)/3369(4)$15.00

ing noise can be conceptualized in two ways. If adding
this noise is viewed as the final operation performed in
the first block, yielding a noise contaminated version z
of y, then we have replaced a possibly invertible system
(x = y) with a noninvertible one (x — z). Alternatively,
if adding competing noise is viewed as the first operation
in the detector block, we have replaced a possibly opti-
mal detector (acting on y) with a suboptimal —but more
physical —detector (acting on y, but in a “randomized”
manner). To see why including the competing or “mea-
surement” noise makes the detector model more physical,
suppose that for certain parameters the nonlinear system’s
mathematical model predicts a response with high signal-
noise separation but arbitrarily low total energy. Without
measurement noise, the optimal detection framework in-
vokes the unphysical concept of processing the response
with unwavering fidelity even as the total power in it goes
to zero. In short, including a measurement noise floor
means that two things, sufficient signal-noise separation
and signal power, are required for good detector opera-
tion. This aspect of the basic SR setting seems to have
been largely overlooked. An intimately related issue is
whether or not one can improve the performance of a given
suboptimal detector by adding noise. This is indeed pos-
sible and has been demonstrated in several SR settings [2]
and, recently, in a low-complexity detector setting [3].
We treat the problem of maximization of signal-noise
separation in noise-floor limited systems from an
information-theoretic (or statistical inference) viewpoint.
We show that, in otherwise ideal or optimal systems
with measurement noise (manifesting itself, for example,
as a noise floor at the optimal detector’s input) of at
least moderate magnitude, local or global maxima with
respect to a naturally present or added (and controllable)
input noise strength can occur, even in fundamental
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measures such as those mentioned above. This is
demonstrated for both a simple static nonlinearity and
a nonlinear dynamical system, with the former serving
as a “cartoon” example in which the underlying mecha-
nisms can be clearly uncovered and understood and the
dynamical example showing the generality of the results
and their relevance to SR.

In our investigation, a central role will be played by a
class of quantities closely related to fundamental limits in
information theory and statistics, the Csizsar-Ali-Silvey ¢
divergences [4,5]. If A is a measure defined on some space
U (e.g., Lebesgue measure on R), and py, p; are two
probability densities with respect to A, the ¢ divergence
dy(po, p1) between po, pp is defined as dg(po, p1) =
f u QS(%) podA, where ¢ is a continuous convex function
on [0,). A ¢ divergence is thus a functional of the like-
lihood ratio pi/po, the central quantity in all the optimal
solutions to the classical inference problems in statistics.
In particular, if H; (i = 0,1) is the hypothesis that p; is
the actual, currently “active” density on ‘U, then the opti-
mal Bayesian test (i.e., detector) for deciding between H)
and H; based on a sample u € ‘U is [6]

decide Hj if p1w) = vy, else decide Hy, (1)
polu)
where y = a/(1 — a) and a,1 — a € (0,1) are

the a priori probabilities for Hy and H;, respectively,
to be correct. For this decision problem, the Kol-
mogorov or error divergence dé‘*)( Do, P1), obtained for
¢(w) =11 — a)v — al, is intimately related to the
minimal probability of error Pg“)(po, p1) [realized by (1)]
through [7]

- 1
P (po, p1) = 5[1 — d“(po, p1)]. 2

A ¢ divergence can more generally be thought of as
an index of separation between the probability densities
po and p;. In particular, the value of dé“)( Do, P1) varies
as |1 — 2al = d®(po, p1) = 1 with equality at the ex-
treme cases for p;/po = 1 with probability one under H
(“equal” densities) and p;/po = 0 with probability one
under Hy (the densities “live” on disjoint parts of U),
respectively. The quantity d\*)( po, pi) can therefore be
regarded as a very basic signal-noise separation index in
situations where the problem is to detect a signal’s pres-
ence on the input or output of a stochastic nonlinear dy-
namical system. For other objectives, other ¢ divergences
can be suitable as signal-noise separation indices [4].

The underlying mechanisms of noise-dependent opti-
mization in noise-floor limited systems are easily under-
stood by considering a simple example in the form of a
static system with a continuous and invertible transfer char-
acteristic (TC) g of the piecewise-linear type, with g(0) =
0, g'(x) = 1 for |x| = 3 and g'(x) = 10 for |x| > 3. The
input is represented by either one of two Gaussian prob-
ability densities pg, p; having a common standard devia-
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tion o; and means uo = 0 and u; = 2, respectively. The
densities pg, p; symbolize the noise-only (Hp) and the
noise-plus-signal cases (H1), respectively. The nonlinear
TC transforms the densities pg, p; into two corresponding
pristine (P) output densities qq, q; (Fig. 1).

Then, an additional independent zero-mean Gaussian
measurement noise with probability density 4 and standard
deviation o, is added onto the P output, producing the
noise-contaminated (NC) output. The two corresponding
probability densities of the NC output are ro = go * h and
r1 = g1 * h (* denotes convolution), respectively (Fig. 2).
From the graphs it appears that the separation between the
P densities ¢q, g1 decreases monotonically with o;, and
this is indeed true when measured in terms of ¢ diver-
gences [since g is invertible dy(po, p1) = dy(qo, q1) and
dg(po, p1) decreases monotonically; see, e.g., [7]]. How-
ever, the separation between ry and r; does not appear
to decrease monotonically because the right-hand “tail” of
the density r| for o; = 2 is very long and “heavy” com-
pared to that of ry, whereas ry and r; are qualitatively very
similar everywhere both for o; = 1 and o; = 4. Indeed,
computing ¢ divergences verifies this observation.

In Fig. 3 the Kolmogorov divergence dé“) =
d9(rg,r) is plotted as a function of input noise
strength o; and a priori probability a for o, = 4. The
corresponding behavior of P{¥)(rg, r;) can then straight-
forwardly be obtained from (2) (qualitatively by “flipping”
the surface in Fig. 3 upside down). For medium values of
@ a clear maximum of d\®) as a function of o; emerges
near the value o; = 2.5. The maximum occurs for a large
range of values of o, as illustrated in Fig. 4 where d\®)
is plotted versus o; and o, for & = 0.5. Intuitively, con-
volution with the measurement noise density /4 “smears
out” the densities qg, g and thus more actively involves
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FIG. 1. Resulting probability densities g, (dotted curve) and

q:1 (dashed curve) on the output of g before addition of mea-
surement noise, for o; = 1 (top), o; = 2 (middle), and o; = 4
(bottom). The separation between go and g, decreases mono-
tonically.
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FIG. 2. Output densities ry (dotted curve) and r; (dashed
curve) after addition of measurement noise with o, = 4. From
top to bottom: o; = 1,2,4. The separation does not decrease
monotonically: the long, heavy right-hand tail of r; makes the
separation between ry and r; be the largest for o; = 2.

the high-gain flanks of the TC, enhancing the difference in
the tail behavior of go, ¢; and overcoming their similarity
near the origin. Several other ¢ divergences (not shown)
consistently reflect this separation enhancement of the NC
output densities.

The peaks shown in Figs. 3 and 4 are modest; however,
the phenomenon becomes much more pronounced in a
dynamical system exemplified by the overdamped Duffing
oscillator:

¥(t) = f(y) + Agsin(wot + 60) + v2D; £(1),  (3)

where D; > 0, &;(r) is white Gaussian noise with mean
zero and autocorrelation (&;(1)&;(t + 7)) = 8(7), 0 is a
constant randomly drawn from the uniform distribution on
[0,27), and f(y) =y — y>. Here, if we regard x(¢) =
Ag sin(wot + 0) + /2D; &;(¢) as the input and y(r) as
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FIG. 3. Kolmogorov divergence dé") for the output of the static
nonlinearity with added measurement noise as a function of o;
and «, for o,, = 4.

the P output, all ¢ divergences based on the informa-
tion in trajectories over [0, T] are preserved between in-
put and output since the system is invertible [8]; hence,
the minimal probability of error in detection (49 = O vs
Ap = const > 0) is the same on the input as on the P
output. However, if a measurement noise is added to the
output, yielding an NC output z(z) according to, e.g.,

2(t) = y(t) + V2D, €4(2), 4)

where D,, >0 and &,(r) is another zero-mean
white Gaussian noise source with autocorrelation
(En()én(t + 7)) = 8(7), the situation changes com-
pletely and SR within the optimal detection framework
can occur. It is in general difficult to compute the NC
output divergences and corresponding minimal probability
of error in detection Pg“) for observations based on a
trajectory, so we will consider bounds for these quantities
instead.

In Figs. 5 and 6 we have computed, respectively, an
upper bound PV for P(*) and a lower bound d% for the
Kolmogorov divergence d'® for the NC output of the sys-
tem (3), (4) with Ag = 0.086, wg = 0.1,and T = 2010.62
(which corresponds to 32 periods of the sinusoid). The
bound PY was obtained by using Monte Carlo simula-
tion to calculate, for each value of D;, D,,, and «, the
error probability PU of the optimal detector of a harmonic
signal of frequency w( and unknown phase (the incoher-
ent detection problem [6]) in the linearized response of
the system output. The error probabilities of this sub-
optimal detector clearly satisfy PU = 132“). We define
dt = (1 — 2PY), which is easily seen to give a lower
bound for d\*) since by (2) and t%l? definition of df we
have % =PV =P = W, and it follows that
d@ =4t

Fortunately, for certain parameter values these bounds
are tight. Since Ay is small and we have used the detector
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FIG. 4. Kolmogorov divergence d* for the output with mea-
surement noise added as a function of o; and o, for &« = 0.5.
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FIG. 5. The upper bound PV for P{*) based on the measure-
ment-noise contaminated output z(7) in (4) of the double well
(3) as a function of D; and D,,, for « = 0.5.

given by linear theory, for small D; (linear response) the
performance of the optimal detector for the linear case
is in fact essentially optimal for the nonlinear system as
well, and the values I3£”‘) and d'®) are essentially achieved.
Also, in the high input noise limit D; — o, dg‘“) goes
to its minimum possible value of |1 — 2«| and, for all
detectors, the probability of error tends to 135“) =(1 -
[1 — 2al)/2. Hence, even though the plot of PY provides
only a bound, there must, at least for each fixed value of
D,, in the order of 1-10, be a pronounced minimum in
i’ff’) as a function of D; at some optimal D; € (0,%). A
similar argument applies to dZ.

Thus, in a very simple setting we have shown an SR
effect in fundamental statistical measures for two differ-
ent types of nonlinear systems (static and dynamic) with
additive noise superimposed on the output to represent
the effects of a measurement noise-floor limitation. The
two systems share a common feature: nonlinear interac-
tion between the signal and noise, which, loosely speak-
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FIG. 6. The lower bound d% for d\*) based on the measure-
ment-noise contaminated output z(z) of the double well as a
function of D; and «, for D,, = 3.266.
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ing, provides a noise-controlled nonlinear gain effect. The
enhanced effect observed in the dynamical system can per-
haps be attributed to a larger degree of nonlinearity away
from the origin (in function space) and the fact that the in-
finite dimensional space that the probability densities live
in allows for more “room” for the noise only and sig-
nal-plus-noise densities to differ. The underlying premise
of this Letter is, however, that even the optimal detection
performance (based on the measurement-noise contami-
nated output) can be enhanced via a generalized version of
the SR effect, using controlled added input noise. In the
absence of the noise floor, of course, one expects the infor-
mation-theoretic distances to be monotonically decreasing
functions of the input noise since the systems under con-
sideration are invertible in this case. Since most practical
detection or quantification systems have measurement and
input noise, our results suggest wide applicability of SR
as a tool for improving detection performance by adding
noise in these systems.
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